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Abstract
We describe a method for computing linear observer

statistics for maximuma posteriori (MAP) reconstructions
of PET images. The method is based on a theoretical
approximation for the mean and covariance of MAP
reconstructions. In particular, we derive here a closed form for
the channelized Hotelling observer (CHO) statistic applied to
2D MAP images. We show reasonably good correspondence
between these theoretical results and Monte Carlo studies. The
accuracy and low computational cost of the approximation
allow us to analyze the observer performance over a wide range
of operating conditions and parameter settings for the MAP
reconstruction algorithm.

I. INTRODUCTION

Image quality and the performance of image reconstruction
algorithms can be assessed using quantitative and qualitative
studies. The latter involve observers who evaluate the images
from the perspective of a clinically relevant task such as
lesion detection. The two major problems associated with
psychophysical studies performed by human observers,
namely high costs and subjective results, can be overcome
by developing computer observers that reliably predict
human performance. Methods for efficiently and accurately
computing the statistics of these observers may prove very
useful, especially when evaluating reconstructed image quality
over a wide parameter space. These methods could be used to
investigate changes in performance associated with variations
in the parameters of the PET system, the source distribution,
and the reconstruction method.

Here we develop a theoretical approximation for
computing statistics of linear observers applied to PET images
reconstructed using nonlinear MAP algorithms. The form of a
linear computer observer for a binary lesion detection task is

�linear(g) = [gL � gB ]
0K�1g; (1)

wheregL andgB are the means of the two classes of images
with and without lesions, respectively. The superscript0

denotes a matrix transpose andK is a matrix that depends
on the specific form of the observer. For a non-prewhitened
observer it is simply the identity matrix, while for a
prewhitened observer,K is a covariance matrix that
decorrelates the noise in the images [1]. A special form of (1)
is the channelized Hotelling observer [2] in which the images
g are filtered by frequency-selective channels that model
properties of the human visual system. This model has been
shown to successfully reflect human performance in detecting

hot lesions in nuclear medicine images under a wide range of
conditions [2, 3, 4].

The Hotelling observer makes use of the covariances of the
images. For linear algorithms this can be computed directly
from the mean of the data by assuming a Poisson model.
When the reconstruction estimator is nonlinear, analysis of
the covariance is more difficult. Moreover, when the image is
defined implicitly as the maximizer of a cost function, there
will be no closed-form expression for the image covariance.
Fessler [5] developed an approach to solving this problem by
using truncated Taylor series approximations. In our previous
work [6, 7] we adapted this approach to obtain approximate
theoretical expressions for the covariance of MAP images as a
function of the mean of the sinogram data. The approximate
covariance is based on an assumption of local invariance in
the response of the PET system and is computed for each
voxel using Fourier transforms with only one data dependent
parameter that can be obtained by a modified backprojection of
the mean sinogram.

Here we use these approximations to compute the mean
of the CHO observer statistic�(g). By expressing the related
area under the ROC curve (AUC) directly as a function of
the statistic [8] [9], we can describe the performance of the
observer with a single expression that includes the features
of the imaging device, the properties of the reconstruction
algorithm, and the characteristics of the human visual system.

II. THEORY

We first review the mathematical aspects of the CHO and of
the covariance approximation presented in [7]. Then, building
on these results, we derive a closed form for the approximation
of the statistic and of the relative AUC for the CHO.

As mentioned in section I, the CHO is a special case of the
linear observer (1) in which the reconstructionsg are considered
in a channel space defined by a matrixU whose rows represent
the impulse response of frequency selective filters centered at
the test location for the lesion [3]:

�(g) = [UgL �UgB ]
0K�1

U
Ug; (2)

where we implicitly assume that the two types of images -
“No-lesion” and “Lesion” - are equally probable.KU is the
mean of the two covariance matrices for the two classes after
transformation through the channels, i.e. it is the composite
channel noise covariance matrix:

KU =
KUL +KUB

2
; (3)



KUi = h[Ug �Ugi][[Ug �Ugi]
0ii: (4)

The notationhii specifies an avarage over the images belonging
to classi.
The observer signal to noise ratio can be written as [8, 10]

SNR =
p
�(gL � gB): (5)

Moreover, under the assumption that�(g) is Gaussian, the area
under the ROC curve is related to the SNR [9, 1] and can be
written in terms of the observer statistic as

AUC =
1

2

 
1 + erf

 p
�(gL � gB)

2

!!
: (6)

The covariance approximation [5] of an implicitly defined
estimatorx̂ is based on the first order Taylor expansion of the
estimator itself:

x̂(y) � x̂(�y) +ryx̂(�y)(y � �y) (7)

Cov(x̂) � ryx̂(�y)Cov(y)[ryx̂(�y)]
0 (8)

wherey is the data obtained from the unknown objectx, and�y
is its mean.
The termryx̂(�y) can be derived from the objective function
using the chain rule and the implicit function theorem [11]. For
the specific case of Poisson emission data and MAP estimation
it can be approximated as

ryx̂(�y) � [F + �R]�1P 0D

�
1

�yi

�
; (9)

whereF = P 0D
h
1

�yi

i
P is the Fisher information matrix when

using a Poisson likelihood model,� is the smoothing parameter
of the MAP estimate,R is related to the second order derivative
of the prior andP is the detection probability matrix [5, 6].
To find the termCov(y) in (8), we note that the variability in the
data is due to two factors, namely (i) the Poisson noise intrinsic
to PET data, and (ii) any variability in the unknown image for
which we will assume a locally stationary covariance�x. It is
straightforward to show that

Cov(y) = D[�yi] +P�xP
0: (10)

The combination of (9) and (10) into (8) leads to the final closed
form for the approximate covariance forx̂:

Cov(x̂) � [F + �R]�1F [F + �R]�1

+ [F + �R]�1F�xF [F + �R]�1: (11)

As shown in [12], this term can be computed on a voxel by voxel
basis using Fourier transforms, by assuming the PET system
response to be locally shift invariant, i.e.:

Covj(x̂) � Q
0D[

��2

j �i(j) + �2i (j)~�
2

i

(�i(j) + ���2

j �i(j))2
]Qej : (12)

Here,Q andQ0 are the Kronecker form of the 2D DFT matrix
and its inverse respectively;�i(j) and�i(j) are related to the

prior energy function in the MAP estimator and to the detection
probability matrix respectively;�2j is the(j; j)th element of the
Fisher information matrix and it thus represents the aggregate
uncertainty in the measurement rays that intersect thejth pixel;
~�i is the 2D Fourier transform of the covariance�x of the
unknown object.

These equations are able to model a spatially variant
detector response using a local-invariant approximation as we
describe in [12]. However, they also assume a local stationarity
in the covariance of the original image�x. Clearly this
assumption is not particularly well suited to the case of varying
lesion sizes and activities. For this reason, the simulations
presented in the following section assume a deterministic
lesion but include random variation in the background activity
in the form of a locally stationary Gaussian random field.
If variability in the lesion is also to be included, then the
contribution to the reconstructed image covariance from the
source image covariance must be accounted for by specific
computation in the spatial domain of the appropriate terms in
(11). This will result in increased computation costs, but they
will still remain orders of magnitude lower than that required
for an equivalent Monte Carlo study.

In [7] we show how the covariance approximation can be
modified to compensate for the nonlinear effect of the non-
negativity constraints typically used in MAP reconstruction and
which are not taken into account when using the first order
Taylor series expansion (8).

Approximation (11) is the key for explicitly computing the
CHO statistic (2) in terms of the data. In fact, noting that in the
case of MAP reconstruction the statistic’s argumentg is given
by the estimatêx, we have the following:

KU = UKU 0 = UCov(x̂)U 0: (13)

The first order Taylor expansion (8) can be used again
to approximate the mean of the reconstructions as the
reconstruction of the noiseless data [5], and thus

x̂(yL)� x̂(yB) � x̂(�yL)� x̂(�yB): (14)

We finally have

�(x̂) � [x̂(�yL)� x̂(�yB)]
0U 0UCov(x̂(y))U 0Ux̂ (15)

whereCov(x̂(y)) is given by (11).

Computing the AUC using (15) and (6) requires only two
reconstructions from the mean of data, one each for the case
with and without lesion, and a modified backprojection to
compute�j [13]. Compared to the Monte Carlo simulations
that would otherwise be required to estimate (6), this represents
a considerable advantage in terms of computational costs.

Equation (15) models in a single mathematical expression
all properties of the imaging process - the PET system geometry
and detector response, the reconstruction algorithm and human
visual system. It allows us to isolate and study the effects of
each component in a modular way and thus offers the potential
for optimizing the system hardware and software for maximum
lesion detectability, at least to the degree that the CHO model
reflects true human observer performance.



III. SIMULATIONS AND RESULTS

Two different kinds of simulations have been performed,
one addressing the accuracy of the theoretical approximation
through Monte Carlo studies and the other aimed at studying
the performance of the theoretical approximation as a function
of some of the key parameters that characterize PET images.

Monte Carlo analysis was performed on three sets of 100
2D images (128x128 pixels) reconstructed using a MAP
algorithm for different values of the smoothing parameter
�. Each data set consisted of sinograms computed from a
256x256 pixel phantom. The sinograms were computed using
the realistic system model that we have developed for the CTI
ECAT HR+ scanner [14]. Half of the sinograms in each data
set were computed from a phantom without lesion, the other
half from the phantom with a lesion at a fixed location with
constant activity across a three pixel radius circle.
The first two data sets were obtained from the same chest
phantom with the lesion located in the right lung. The first
had a constant background to which the lesion was added
in 50% of the cases. In the second data set, a different
background was used in each phantom image by adding a
smooth Gaussian random field to the lung as illustrated in
Fig. 1. Each of the 144x288 element sinograms were scaled
so that the mean number of counts generated was 200k and
then realistic data generated using a Poisson pseudo-random
number generator. Both data sets included attenuation effects
but perfect attenuation correction factors were assumed known.
Scatter was included only in the second set, in which a 5%
constant background was addded to the sinograms before
generating the pseudo-Poisson data.
The last set of images was obtained from a brain phantom
(Fig. 2), which includes more anatomical detail than the
chest phantom. Again, a Gaussian random field was added
to the white matter and the lesion was placed in 50% of the
sinograms. A 5% constant scatter was added to the sinograms
and the total sinogram scaled to a mean of 400K counts before
generating pseudo-Poisson data.

For each of the three sets we computed the sample mean
differencegL � gB and the sample covariance matrixK�1

U
for

the CHO observer for two different types of channel filters:
DOG (difference Of Gaussian) and SQR (non-overlapping
square filters), with three channels in each case. We then
computed the performance of the observer as measured by the
AUC, as defined in eq.(6).
The theoretical estimate of the AUC was obtained using
equations (15) and (12). In this analysis we included the
method proposed in [7] to compensate for the effects of the
non-negativity constraints used in the MAP reconstructions.
Note that instead of computing the mean differencegL � gB
between the noiseless reconstruction of the normal and
abnormal phantom, as suggested in eq.(15), one could also
estimate it as the convolution of the function representing the
lesion with the local impulse response at the center of the
lesion [12].

Comparisons of the two observers’ performance, with
reference to the three sets of images described above, are
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Figure 1: The transaxial chest plane phantom used in the simulations.
The first row is related to the first study: the left image is the original
abnormal phantom with values for lung:heart:soft tissue of 0.1:3.1:1.1.
A 3 pixel radius lesion of intensity 2 is shown in the lower right lung.
On the right is a MAP reconstruction for� = 100. The second row
refers to the second study: the left image is the original abnormal
phantom with values for lung:heart:soft tissue of 0:3:1 to which we
added a correlated Gaussian background with a mean of 0.2. A 3
pixel radius lesion of maximum intensity 1.1 is shown in the lower
right lung. On the right is a MAP reconstruction for� = 100.
The last row shows profiles of the 256x256 phantoms used in both
studies (left), and of their 128x128 reconstructions for� = 100 (right).

Figure 2: The transaxial brain plane phantom used in the simulations.
Left: the original 256x256 abnormal phantom with values for
white:grey:csf of 5:1:0, with a 3 pixel radius lesion of maximum
intensity 0.9 in the right side of the brain, and with background
variability of mean 0.2. Right: a 128x128 MAP reconstruction for
� = 10.

summarized in Fig. 3, where the AUC values are plotted as a
function of the MAP smoothing parameter�.

When no variability is present in the object, the two
approaches show very good agreement. When background
variability is included, the approximations used in the
theoretical analysis have a greater influence on the final results,
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Figure 3: AUC values for the channelized Hotelling observer as a
function of the smoothing parameter�, computed both by Monte
Carlo simulations and by the theoretical approximation on the set of
(1st row) chest phantom with no variability (DOG channels) (2nd row)
chest phantom with background activity (left: DOG channels; right
SQR channels) (3rd row) brain phantom with background activity
(left: DOG channels; right SQR channels).

especially for the chest phantom. The major causes of the
differences between Monte Carlo and the theoretical model
are probably (i) the approximation of the mean difference
with the difference of the noiseless normal and abnormal
reconstructions, (ii) the assumption of space invariance used in
computing the reconstructed image covariance, and (iii) the
influence of the non negativity constraint on the accuracy of the
covariance.
Differences are also due to the finite sample size of the sets
used for the Monte Carlo simulations. In fact, the AUC
values computed using sample statistics are affected by both
variance and bias. To gain a deeper insight into these effects,
we extended the first chest phantom study to 1000 images.
We first addressed the problem of the variance, by applying
the observer to several sets of 50+50 reconstructions each,
randomly choosen among the 1000 images. An example of the
distribution of the values thus obtained is shown in figure 4. In
this specific case, the distribution has a standard deviation of
0.031. We also plotted the AUC values as a function of the
number of samples to examine changes in bias as a function
of the number of images in the study. In the graph shown in
figure 4 each AUC is obtained as the average of 250 AUC
values. Because of the very high computational costs and
storage space required, the image set is not large enough to
allow one to pick completely independent sample sets, and
thus the AUC values are correlated; nevertheless, the curve

clearly shows a 1/N dependency on the number of samples.
These observations are consistent with studies presented in [15].
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Figure 4: Accuracy of Monte Carlo simulations. Left: distribution
of AUC values computed on 150 sets of 100 reconstructions each,
randomly selected within a set of 1000 samples: standard deviation =
0.031. Right: AUC values as a function of set cardinality: each AUC
value was obtained as the mean of 250 values.

One of the advantages of the theoretical expressions, is that
we can study lesion detectability under various conditions
without time consuming Monte Carlo reconstructions. As an
example, we computed lesion detectability (SNR) as a function
of the contrast of lesion to background, lesion size, and
background noise (reflecting inhomogeneous tracer uptake).
Fig. 5 shows the SNR for lesions with different contrast levels
and sizes. The simulated lesion has a Gaussian shape. In
general, SNR is linearly proportional to the contrast of the
lesion, while it increases at a sub-linear rate as a function of
size. As a result, for a fixed total lesion activity, it is easier to
detect a high contrast small lesion than a low contrast large
lesion. In Fig. 6 we plot SNR as a function of background
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Figure 5: Surface and contour plot of the channelized Hotelling
observer SNR (DOG channels) as a function of lesion contrast and
size.

noise and lesion contrast. The noise level is determined
by the variance of the Gaussian MRF used to model the
inhomogeneity in tracer uptake.
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Figure 6: Surface and contour plot of the channelized Hotelling
observer SNR (DOG channels) as a function of background noise
level and lesion contrast.

IV. CONCLUSION

Computer observers are becoming a popular alternative
to human observers for performing psychophysical studies to
assess image quality and performance of imaging systems and
reconstruction algorithms. We have presented a theoretical
approach to reducing the computational costs of linear
observer statistics developed for the task of lesion detection in
tomographic images. Studies using the channelized Hotelling
observer for nonlinear MAP image reconstruction methods
showed our model to be a fairly accurate and very low cost
alternative to the traditional Monte Carlo studies. Using
chest and brain phantoms we have shown the influence
of smoothing parameter, lesion contrast, lesion size and
background noise level on CHO performance. More generally,
these closed form theoretical expressions allow us to compute
observer performance over a large variety of parameter
settings (including the system hardware configuration and
reconstruction methods) and imaging features in order to study
their effects on lesion detectability.
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